Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Research on hurricane impacts in Florida’s coastal regions has been extensive, yet there remains a gap in comparing the effects and potential damage of different hurricanes within the same geographical area. Additionally, there is a need for reliable discussions on how variations in storm surges during these events influence evacuation accessibility to hurricane shelters. This is especially significant for rural areas with a vast number of aging populations, whose evacuation may require extra attention due to their special needs (i.e., access and functional needs). Therefore, this study aims to address this gap by conducting a comparative assessment of storm surge impacts on the evacuation accessibility of southwest Florida communities (e.g., Lee and Collier Counties) affected by two significant hurricanes: Irma in 2017 and Ian in 2022. Utilizing the floating catchment area method and examining Replica’s OD Matrix data with Geographical Information Systems (GISs)-based technical tools, this research seeks to provide insights into the effectiveness of evacuation plans and identify areas that need enhancements for special needs sheltering. By highlighting the differential impacts of storm surges on evacuation accessibility between these two hurricanes, this assessment contributes to refining disaster risk reduction strategies and has the potential to inform decision-making processes for mitigating the impacts of future coastal hazards.more » « lessFree, publicly-accessible full text available March 1, 2026
-
The growing complexity of natural disasters, intensified by climate change, has amplified the challenges of managing emergency shelter demand. Accurate shelter demand forecasting is crucial to optimize resource allocation, prevent overcrowding, and ensure evacuee safety, particularly during concurrent disasters like hurricanes and pandemics. Real-time decision-making during evacuations remains a significant challenge due to dynamic evacuation behaviors and evolving disaster conditions. This study introduces a spatiotemporal modeling framework that leverages connected vehicle data to predict shelter demand using data collected during Hurricane Sally (September 2020) across Santa Rosa, Escambia, and Okaloosa counties in Florida, USA. Using Generalized Additive Models (GAMs) with spatial and temporal smoothing, integrated with GIS tools, the framework captures non-linear evacuation patterns and predicts shelter demand. The GAM outperformed the baseline Generalized Linear Model (GLM), achieving a Root Mean Square Error (RMSE) of 6.7791 and a correlation coefficient (CORR) of 0.8593 for shelters on training data, compared to the GLM’s RMSE of 12.9735 and CORR of 0.1760. For lodging facilities, the GAM achieved an RMSE of 4.0368 and CORR of 0.5485, improving upon the GLM’s RMSE of 4.6103 and CORR of 0.2897. While test data showed moderate declines in performance, the GAM consistently offered more accurate and interpretable results across both facility types. This integration of connected vehicle data with spatiotemporal modeling enables real-time insights into evacuation dynamics. Visualization outputs, like spatial heat maps, provide actionable data for emergency planners to allocate resources efficiently, enhancing disaster resilience and public safety during complex emergencies.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Traffic crashes significantly contribute to global fatalities, particularly in urban areas, highlighting the need to evaluate the relationship between urban environments and traffic safety. This study extends former spatial modeling frameworks by drawing paths between global models, including spatial lag (SLM), and spatial error (SEM), and local models, including geographically weighted regression (GWR), multi-scale geographically weighted regression (MGWR), and multi-scale geographically weighted regression with spatially lagged dependent variable (MGWRL). Utilizing the proposed framework, this study analyzes severe traffic crashes in relation to urban built environments using various spatial regression models within Leon County, Florida. According to the results, SLM outperforms OLS, SEM, and GWR models. Local models with lagged dependent variables outperform both the global and generic versions of the local models in all performance measures, whereas MGWR and MGWRL outperform GWR and GWRL. Local models performed better than global models, showing spatial non-stationarity; so, the relationship between the dependent and independent variables varies over space. The better performance of models with lagged dependent variables signifies that the spatial distribution of severe crashes is correlated. Finally, the better performance of multi-scale local models than classical local models indicates varying influences of independent variables with different bandwidths. According to the MGWRL model, census block groups close to the urban area with higher population, higher education level, and lower car ownership rates have lower crash rates. On the contrary, motor vehicle percentage for commuting is found to have a negative association with severe crash rate, which suggests the locality of the mentioned associations.more » « lessFree, publicly-accessible full text available December 1, 2025
-
This project presents methodology to analyze high resolution connected vehicle data (CVD) for understanding how movements of populations during pandemic-hurricanes impact disease spread and devising better plans for safe sheltering and evacuations of vulnerable populations. The dataset contains historical vehicular movement data of for Florida Panhandle Counties of Calhoun, Escambia, Liberty, Gadsden, Jackson, Santa Rosa, Washington and Bay that are impacted by Hurricane Sally which made landfall on September 16, 2020. This coincided with the first phase of the Covid-19 pandemic. The datasets used for this study consist of GPS movement data, shelter and lodging facility wait time, and vehicle count data for 44 shelters and 123 lodging facilities in Florida’s Santa Rosa, Escambia, and Okaloosa counties from 01 to 30 September 2020. The dataset has been used in the following publications: Tsekeni, D.E., Alisan, O., Yang, J., Vanli, O. A., Ozguven, E.E., (2025) “Spatiotemporal modeling of connected vehicle data: An application to non-congregate shelter planning during hurricane-pandemics”, Applied Sciences, 15, 3185. DOI: 10.3390/app15063185. Tsekeni, D.E., Vanli, O. A., (2025) “Time Series Segmentation of Movement Network Data for Endemic-Epidemic Modeling of Infectious Diseases”, IISE Transactions on Healthcare Systems Engineering, (Submitted, May 2025)more » « less
-
Although the literature provides valuable insight into tornado vulnerability and resilience, there are still research gaps in assessing tornadoes’ impact on communities and transportation infrastructure, especially in the wake of the rapidly changing frequency and strength of tornadoes due to climate change. In this study, we first investigated the relationship between tornado exposure and demographic-, socioeconomic-, and transportation-related factors in our study area, the state of Kentucky. Tornado exposures for each U.S. census block group (CBG) were calculated by utilizing spatial analysis methods such as kernel density estimation and zonal statistics. Tornadoes between 1950 and 2022 were utilized to calculate tornado density values as a surrogate variable for tornado exposure. Since tornado density varies over space, a multiscale geographically weighted regression model was employed to consider spatial heterogeneity over the study region rather than using global regression such as ordinary least squares (OLS). The findings indicated that tornado density varied over the study area. The southwest portion of Kentucky and Jefferson County, which has low residential density, showed high levels of tornado exposure. In addition, relationships between the selected factors and tornado exposure also changed over space. For example, transportation costs as a percentage of income for the regional typical household was found to be strongly associated with tornado exposure in southwest Kentucky, whereas areas close to Jefferson County indicated an opposite association. The second part of this study involves the quantification of the tornado impact on roadways by using two different methods, and results were mapped. Although in both methods the same regions were found to be impacted, the second method highlighted the central CBGs rather than the peripheries. Information gathered by such an investigation can assist authorities in identifying vulnerable regions from both transportation network and community perspectives. From tornado debris handling to community preparedness, this type of work has the potential to inform sustainability-focused plans and policies in the state of Kentucky.more » « less
-
Hurricane-induced storm surge and flooding often lead to the closures of evacuation routes, which can be disruptive for the victims trying to leave the impacted region. This problem becomes even more challenging when we consider the impact of sea level rise that happens due to global warming and other climate-related factors. As such, hurricane-induced storm surge elevations would increase nonlinearly when sea level rise lifts, flooding access to highways and bridge entrances, thereby reducing accessibility for affected census block groups to evacuate to hurricane shelters during hurricane landfall. This happened with the Category 5 Hurricane Michael which swept the east coast of Northwest Florida with long-lasting damage and impact on local communities and infrastructure. In this paper, we propose an integrated methodology that utilizes both sea level rise (SLR) scenario-informed storm surge simulations and floating catchment area models built in Geographical Information Systems (GIS). First, we set up sea level rise scenarios of 0, 0.5, 1, and 1.5 m with a focus on Hurricane Michael’s impact that led to the development of storm surge models. Second, these storm surge simulation outputs are fed into ArcGIS and floating catchment area-based scenarios are created to study the accessibility of shelters. Findings indicate that rural areas lost accessibility faster than urban areas due to a variety of factors including shelter distributions, and roadway closures as spatial accessibility to shelters for offshore populations was rapidly diminishing. We also observed that as inundation level increases, urban census block groups that are closer to the shelters get extremely high accessibility scores through FCA calculations compared to the other block groups. Results of this study could guide and help revise existing strategies for designing emergency response plans and update resilience action policies.more » « less
An official website of the United States government

Full Text Available